Что такое и принципы работы оптоволкна

Содержание
  1. Что такое оптоволокно
  2. Основной принцип работы оптоволокна
  3. Передача света
  4. Гибкие световоды
  5. Передача информации со скоростью света
  6. Применяемые материалы
  7. Кварцевое стекло
  8. Полимерные материалы
  9. Виды оптических кабелей
  10. Одномодовые
  11. Многомодовые
  12. Особенности многомодового кабеля
  13. Монтаж волоконно-оптических линий связи, его особенности и порядок.
  14. Устройство и принцип работы
  15. Область применения ВОЛС
  16. Световоды по новой технологии
  17. Производство световолокна
  18. Сложность технологии и ограничения
  19. Будущие тенденции в технологиях оптоволокна
  20. Все сети передачи оптические
  21. Терабитные сети
  22. Интеллектуальная сеть передачи данных
  23. Сверхдальняя передача данных
  24. Усовершенствования в лазерной технике
  25. Лазерные узлы нейронной сети
  26. Полимерные оптические волокна
  27. Подводные системы
  28. Миниатюризация
  29. Преимущества и недостатки волоконно-оптического кабеля
  30. Вывод

Что такое оптоволокно

В обыкновенном проводе электрический сигнал проходит по медному проводнику. В оптических линиях по ним проходят световые фотоны и волны. Оптиковолокно считается самым быстрым способом передачи информации на значительные расстояния. Кабель состоит из нескольких отдельных проводников разделенными между собой специальными покрытиями. В конструкции каждый отдельный элемент проводит информацию, зашифрованную в свет.

В качестве передаваемой информации могут использоваться телефонные и телевизионные данные, а также интернет (благодаря оптоволокну добиваются высокой скорости доступа в Интернет). В настоящее врем все три сигнала для передачи объединяются в один.

Основной принцип работы оптоволокна

Принцип работы оптоволокна состоит в использовании световых импульсов для передачи информации из одной точки в другую через специальный кабель. Передаваемая информация по существу является цифровой информацией, генерируемой телефонными системами, компаниями кабельного телевидения и компьютерными системами.

Оптическое волокно представляет собой диэлектрический цилиндрический волновод, изготовленный из материалов, обычно диоксида кремния. Сердцевина волновода имеет показатель преломления немного выше, чем у внешней среды (оболочки), так что световые импульсы направляются вдоль оси волокна полным внутренним отражением.

Волоконно-оптические системы состоят:

  • из передатчика для преобразования электрического сигнала в оптический для передачи по кабелю, содержащему несколько пучков оптических волокон;
  • усилителей для повышения мощности сигнала;
  • приемника для повторного преобразования принятого оптического сигнала обратно в исходный переданный электрический сигнал.

Передача света

Через медную витую пару проходит огромное количество электронов. Ток переходит по проводнику, передавая закодированную последовательность импульсов – данные. Сам код состоит из нулей и единиц (двоичный). Оптоволокно отправляет сигналы по аналогичному принципу, хотя в плане физики здесь сложнее.

Лучше обойтись без теории и просто понимать, что аналогично электронам, световые волны также умеют передавать данные. К примеру, когда на аэродромах отказывает связь по радио, используется запасной вариант – сигналы отправляются по прожекторам. Однако, такой способ можно использовать лишь в прямой видимости, а оптоволокно передает свет на тысячи километров и не всегда по прямой.

Изначально ученые пытались передавать свет на долгие расстояния с помощью зеркал. Так, металлические трубы внутри покрывались зеркальным слоем и в них направлялся световой луч. Но цена таких световодов оказалась слишком высокой, а свет рано или поздно терял свои свойства и угасал.

Позже решение было найдено – свет можно запереть, если использовать для его передачи две среды с разными оптическими свойствами. При этом будет достаточно даже небольшого различия.

Гибкие световоды

Материалы не столь уж важны. В физических опытах для детей, демонстрирующих этот эффект, часто используют воду и прозрачную пластмассовую трубку. Больше чем на пару метров в таком световоде световой луч не передать, но смотрится это красиво. По той же причине светильники и прочие декоративные изделия часто имеют в своей конструкции световоды из пластмасс. Но когда речь заходит о передаче информации на многие километры, требуются особые, сверхчистые материалы, с минимумом примесей и оптическими свойствами, близкими к идеальным.

В 1934 году американец Норман Р. Френч запатентовал стеклянный световод, который должен был обеспечить телефонную связь, но он толком не работал. Потребовалась масса времени, чтобы найти материал, который бы отвечал высочайшим требованиям к чистоте и прозрачности, изобрести оптическое волокно из диоксида кремния — чистейшего кварцевого стекла. Чтобы создать в прозрачном кремнии разность коэффициентов преломления, прибегают к хитрости. Центр прозрачной болванки, которая превратится в провод, оставляют чистым, в то время, как внешние слои насыщают германием — он изменяет оптические характеристики стекла.

В таком случае, болванку обычно спекают из двух заранее приготовленных стеклянных трубок, вставленных одна в другую. Но можно поступить и наоборот, насытив сердцевину стекловолокна германием. Более технологичным и высококачественным стекловолокно получается, когда стеклянные трубки наполняют изнутри газом и ждут, пока германий сам осядет на стекло тончайшим слоем. Затем трубку разогревают и растягивают до метровой длины. При этом полость внутри закрывается сама.

Получившийся стержень имеет сердцевину с одним коэффициентом преломления и оболочку с другими оптическими параметрами. Он то и послужит для изготовления оптического волокна. Пока тяжелая заготовка толщиной в руку ничем не напоминает провод, но кварцевое стекло хорошо растягивается.

Подготовленную болванку поднимают на высоту десятиметровой башни, закрепляют на вершине и равномерно нагревают до пор, пока по консистенции она не будет напоминать нугу. Тогда из стеклянной болванки под собственным весом начинает тянуться тончайшая нить. По пути вниз она остывает и приобретает гибкость. Это может показаться странным, но сверхтонкое стекло прекрасно гнется.

Готовое оптическое волокно, непрерывно поступающее вниз, окунают в ванну с жидким пластиком, образующим защитный слой на поверхности кварца, а затем сматывают. Так продолжается до тех пор, пока заготовка на вершине башни не будет полностью переработана в единую нить из сотни-другой километров оптического волокна.

Из него, в свою очередь, будут сплетены кабели, содержащие от пары, до пары сотен отдельных стеклянных волокон, упрочняющие вставки, экранирующие слои и защитные оболочки.

  1. Осевой стержень.
  2. Оптическое волокно.
  3. Пластиковая защита оптических волокон.
  4. Пленка с гидрофобным гелем.
  5. Полиэтиленовая оболочка.
  6. Армирование.
  7. Внешняя полиэтиленовая оболочка.

Передача информации со скоростью света

Для запуска в производство оптоволокна необходимо строить специализированные заводы, специально обучать персонал, не забывая при этом об огромных вложениях. В любом случае, вложения стоят полученной выгоды.

Скорость света – это максимальный предел, позволяющий обмениваться информацией. Медные провода такого предела достигнуть не могут.

Единственным конкурентом оптоволокна можно назвать линию прямого оптического соединения.

В постсоветских странах в основном домашний интернет проводят посредством двужильного кабеля, где толщина жил составляет от одного до двух миллиметров. Максимальная скорость передачи данных составляет 100 Мбит/сек. Ее вполне хватит для нескольких компьютеров, однако, при наличии Smart TV, NAS сервера и других смарт-устройств, будет недостаточно кабеля даже с восемью жилами. При этом у оптоволокна с толщиной 9 микрон пропускная способность в 30 раз выше, а сам оптоволоконный кабель работает на нескольких жилах.

Еще одно преимущество применения оптоволоконного кабеля – его меньший вес, по сравнению с медными проводами, и габариты. Это удобно при прокладывании магистральных линий.

Благодаря оптическим кабелям, появилась возможность соединить даже целые континенты. Например, в России первая линия была проложена в Москве. Подводным кабелем первым соединили Санкт-Петербург и Аберслунд (Дания).

После этого оптоволокно стали использовать для связи между предприятиями, банками и госучреждениями. Что касается интернета для населения, в городах применяется практика, когда такими линиями провайдеры подключают многоквартирные дома, а уже в квартиры интернет поступает при помощи традиционной витой пары. Тем не менее, некоторые пользователи уже начали переходить на оптику, хотя такая возможность доступна не всем.

Применяемые материалы

В производстве оптоволокна применяются следующие материалы:

  • кварцевое стекло;
  • материалы на основе полимеров.

Кварцевое стекло

Производится при плавлении минерала кварца, который является ценной породой. В результате его применения оптические волокна приобретают следующие положительные свойства:

  • высокие прозрачные характеристики, благодаря которым возможно передавать различные виды сигналов без потерь;
  • малые значения затухания позволяют прокладывать линии на значительные расстояния;
  • сохранение свойств при длительном воздействии высоких температур.

Полимерные материалы

Применение таких материалов позволяет использовать оптиковолокно большой толщины, благодаря пластичности и стабильности на изгиб и залом. Недостатком является недопустимость использования в зонах инфракрасного излучения в результате которого происходит затухание сигнала.

Виды оптических кабелей

Всего есть два вида:

  • Одномодовый (желтого цвета)
  • Многомодовый (оранжевого цвета)

В первом случае диаметр сердечника равен примерно 9 мкм, а во втором — 50 или 62,5 мкм.

От вида кабеля напрямую зависит скорость затухания передаваемого сигнала. Первый тип способен без потерь передавать данные на дистанцию до 10 километров. А второй – всего на два-три километра. При этом одномодовые оптические кабели обладают пропускной способностью до 100 Гб/с на км и используются все чаще и чаще.Они подразделяются на 3 маркировки:

  • Стандартная (SF, SM или SMF)
  • Со смещенной дисперсией (DS или DSF)
  • С ненулевой смещенной дисперсией (NZ, NZDSF или NZDS)

Два последних типа используются на гораздо дальние дистанции, чем стандартное оптоволокно.

Сейчас ведутся исследования, в результате которых скоро появится возможность передавать данные со скоростью до 160 Гбит/с.

Одномодовые

В таком исполнении сердечник имеет толщину до 8 мкм. Благодаря минимальным размерам по волокну способен проходить единственный луч практически без потерь. Данный вид применяется в линиях на значительном протяжении, где важно сохранить качество сигнала.

Многомодовые

Данный вид сердечника состоит из волокна толщиной до 62,5 мкм. По таким кабелям способны протекать множественные световые пучки, позволяя перемещаться им одновременно под разными углами к сердцевине. Сигнал в таких проводах испытывает значительные потери в результате многих отражений от оболочки.

Многомодовые оптиковолоконные линии в свою очередь делятся на два типа:

  1. Градиентные. В таких кабелях плотность сердечника меняется в некоторых местах на протяжении линии, что позволяет сигналу развивать высокую скорость за меньший период времени.
  2. Ступенчатые. В данном типе исполнения плотность волокон сердечника единая на протяжении всей линии.

Особенности многомодового кабеля

֎ Обычно используют при расстояниях, не превышающих 500-1000 метров пропускная

֎ Пропускная способность многомодового оптоволокна — 2,5 Гбит/с.

֎ В качестве источника светового сигнала используется светодиод.

Монтаж волоконно-оптических линий связи, его особенности и порядок.

Монтаж волоконно-оптических линий связи:

Стекловолокно очень прочный, но хрупкий материал, хотя благодаря защитной оболочке, с ним можно обращаться практически как с электрическим. Однако при монтаже кабеля следует соблюдать требования производителей по:

  • «Максимальному растяжению» и «максимальному разрывному усилию», выраженному в ньютонах (около 1000 Н или 1кН). В оптическом кабеле основное напряжение приходится на силовую конструкцию (укрепленный пластик, сталь, кевлар или их комбинация). Каждый тип конструкции имеет свои индивидуальные показатели и степень защиты, если натяжение превышает предусмотренный уровень, то оптоволокно может быть повреждено.
  • «Минимальному радиусу изгиба» – делать изгибы более плавными, избегать резких сгибов.
  • «Механической прочности», она выражается в Н/м (ньютоны/метры) – защита кабеля от физических нагрузок (на него можно наступить или даже наехать транспортом. Следует быть предельно осторожными и особо обезопасить места пересечения и соединения, нагрузка сильно увеличивается из-за малой зоны контакта.

Оптический кабель обычно поставляется намотанным на деревянные барабаны с прочным пластиковым защитным слоем или деревянными планками по окружности. Внешние слои кабеля наиболее уязвимы, поэтому при монтаже необходимо помнить о весе барабана, беречь его от ударов, падений, предпринимать меры безопасности при складировании. Лучше всего хранить барабаны горизонтально, если же они все-таки лежат вертикально, то их края (ободы) должны соприкасаться.

Порядок и особенности монтажа оптоволоконного кабеля:

  1. До начала монтажа необходимо осмотреть барабаны с кабелем на предмет повреждений, вмятин, царапин. При любом подозрении кабель лучше сразу отложить в сторону для последующего детального изучения или отбраковки. Короткие куски (меньше 2 км.) на непрерывность волокна можно проверить на просвет любым фонариком. Волоконный кабель для инфракрасной передаче так же хорошо передает обычный свет.
  2. Далее изучить трассу на предмет потенциальных проблем (острые углы, забитые кабельные каналы и т.д.), при их наличии внести в маршрут изменения для минимизации рисков.
  3. Распределить кабель по маршруту таким образом, чтобы точки соединения и подключения усилителей находились в доступных, но защищенных от неблагоприятных факторов местах. Важно, чтобы в местах будущих соединений оставался достаточный запас кабеля. Открытые концы кабеля должны быть защищены водонепроницаемыми колпаками. Для минимизации напряжения на изгиб и повреждений от проезжающего транспорта используются трубы. На обоих концах кабельной линии оставляют часть кабеля, его длина зависит от планируемой конфигурации).
  4. При прокладке кабеля под землей его дополнительно защищают от повреждений в локальных точках нагрузки, таких как контакт с неоднородным материалом засыпки, неровностями траншеи. Для этого кабель в траншее укладывают на слой песка 50-150 см. и сверху засыпают таким же слоем песка 50-150 см. Дно траншеи должно быть ровным, без выступов, при закапывании следует удалять камни, которые могут повредить кабель. Следует отметить, что повреждения кабеля могут возникнуть как сразу, так и в процессе эксплуатации (уже после засыпки кабеля), например от постоянного давления, не убранный камень может постепенно продавить кабель. Работы по диагностике и поиску и устранению нарушений уже закопанного кабеля обойдутся намного дороже, чем аккуратность и соблюдение мер предосторожности при монтаже. Глубина траншеи зависит от типа почвы и ожидаемой нагрузки на поверхности. В твердой породе глубина составит 30 см., в мягкой или под дорогой 1 м. Рекомендуемая глубина составляет 40-60 см., при толщине песчаной подстилки от 10 до 30 см.
  5. Чаще всего применяется укладка кабеля в траншею или в лоток прямо с барабана. При монтаже очень длинных линий, барабан помещается на транспортное средство, по мере продвижения машины кабель укладывается на свое место, при этом не стоит торопиться, темп и порядок размотки барабана регулируется вручную.
  6. При укладке кабеля в лоток самое главное не превышать критический радиус изгиба и механической нагрузки. Кабель следует укладывать в одной плоскости, не создавать точек сосредоточенных нагрузок, избегать на трассе резких углов, давления и пересечения с другими кабелями и трассами, не изгибать кабель.
  7. Протяжка оптоволоконного кабеля через кабельные каналы аналогична протяжке обычного кабеля, но не стоит прилагать излишних физических усилий и нарушать спецификации производителя. При использовании скоби хомутов помните, что нагрузка должна ложиться не на внешнюю оболочку кабеля, а на силовую конструкцию. Для уменьшения трения можно использовать тальк или гранулы из полистирола, по поводу применения других смазок необходимо консультироваться с производителем.
  8. В случаях, если кабель уже имеет концевую заделку, при монтаже кабеля следует быть особенно внимательными, что бы не повредить разъемы, не загрязнить их и не подвергать чрезмерной нагрузке в зоне соединения.
  9. После укладки кабель в лотке закрепляется нейлоновыми стяжками, он не должен сползать или провисать. Если особенности поверхности не позволяют использовать специальные кабельные крепления, допустимо применение хомутов, но с особой осторожностью, чтобы не повредить кабель. Рекомендуется применение хомутов с пластиковым защитным слоем, для каждого кабеля следует использовать отдельный хомут и ни в коем случае не стягивать вместе несколько кабелей. Между конечными точками крепления кабеля лучше оставить небольшую слабину, а не класть кабель в натяг, иначе он будет плохо реагировать на колебания температуры и вибрации.
  10. Если при монтаже оптоволокно все-таки было повреждено, пометьте участок и оставьте достаточный запас кабеля для последующего сращивания.

В принципе, прокладка оптоволоконного кабеля не сильно отличается от монтажа обычного кабеля. Если соблюдать все указанные нами рекомендации, то проблем при монтаже и эксплуатации не возникнет и Ваша система будет работать долго, качественно и надежно.

Устройство и принцип работы

Оптические кабели представляют собой проводник, состоящий из нескольких жил обернутый в оплетку-экран. Сами жилы изготавливаются из стекла или полимера и обладают повышенной гладкостью для обеспечения максимальной проводимости.

Веществом, которое переносит информацию является свет, он имеет самую большую скорость перемещения. Кабельные жилы — это, по сути, стеклянные трубки, обернутые в металлическую фольгу, которая служит экраном сохраняющим поток сигнала. Свет, проходя по кабелю отражается от стенок и доходит до приемника. Скорость передачи информации ниже скорости света, в результате того, что фотоны не летят прямолинейно.

Сигнал в результате своего движения все-таки терпит некоторые потери. Затухание во многом зависит от качества применяемых материалов и условий прокладки оптоволокна. Не малую роль при этом играет и сам передатчик.

Область применения ВОЛС

Оптоволоконный кабель применяется для обеспечения связи и передачи информации уже более 40 лет, но из за высокой стоимости широко использоваться стал сравнительно недавно. Развитие технологий позволило сделать производство экономичней и стоимость кабеля доступней, а его технические характеристики и преимущества перед другими материалами быстро окупают все понесенные расходы.

В настоящее время, когда на одном объекте используется сразу комплекс слаботочных систем (компьютерная сеть, СКУД, видеонаблюдение, охранная и пожарная сигнализации, охрана периметра, телевидение и др.), обойтись без применения ВОЛС не возможно. Только использование оптоволоконного кабеля делает возможным одновременное применение всех этих систем, обеспечивает корректную стабильную работу и выполнение их функций.

ВОЛС все чаще применяется как основополагающая система при разработке и монтаже СКС, в особенности для многоэтажных зданий, зданий большой протяженности и при объединении группы объектов. Только Волоконно-оптические кабели могут обеспечить соответствующий объем и скорость передачи информации. На основе оптоволокна могут быть реализованы все три подсистемы СКС, в подсистеме внутренних магистралей оптические кабели применяются одинаково часто с кабелями из витых пар, а в подсистеме внешних магистралей они играют доминирующую роль. Различают оптоволоконный кабель для внешней (outdoor cables) и внутренней (indoor cables) прокладки, а так же соединительные шнуры для коммуникаций горизонтальной разводки, оснащения отдельных рабочих мест, объединения зданий.

Не смотря на относительно высокую стоимость, применение оптоволокна становится все более оправдано и находит все более широкое применение.

Световоды по новой технологии

Уже понятно, что для простой передачи света не столь важен выбор материалов. Для физических опытов в школе достаточно иметь под рукой воду и трубку из пластмассы. Тем не менее, для трансляции сигналов на тысячи километров необходимы максимально чистые материалы с практически идеальными оптическими свойствами и с минимальными примесями.

Наиболее подходящим материалом оказался диоксид кремния (кварцевое стекло). Для получения в нем разных коэффициентов преломления света используется хитрость. Так, его центр оставили чистым, а внешние слои насытили германием, позволяющим изменить свойства стекла.

Производство световолокна

Болванка (которая в будущем превратится в провод) спекается из двух подготовленных трубок, вставляемых одна в одну. Существует и другой вариант, когда сердцевина насыщается германием.

Однако, лучше наполнить трубки изнутри газом. Затем достаточно подождать, чтобы германий сам осел на стекло с минимальным слоем. После этого останется разогреть трубку и растянуть на метр. Вдобавок, полость внутри закроется самостоятельно.

У готового стержня будет сердцевина и оболочка с различными оптическими свойствами.

Именно он подходит для будущего оптоволоконного провода. Хотя заготовка с диаметром несколько десятков сантиметров не слишком его напоминает, зато стекло из кварца отлично можно растянуть.

Поэтому готовую болванку поднимают на башню с высотой 10 метров, укрепляют ее и начинают равномерно подогревать, чтобы ее консистенция начала напоминать нугу. Начиная с определенного момента, из болванки под ее весом начнет тянуться тонкая нить. Опускаясь вниз, она застынет и станет достаточно гибкой. Это вызывает удивление, однако, сверхтонкие стекла хорошо сгибаются.

Приготовленное оптоволокно, постоянно опускающееся вниз, спускают в наполненную жидким пластиком емкость. Это позволяет нанести защиту на кварцевую поверхность, затем нить сматывают. Процесс идет до того момента, пока болванка не превратится в одну нить, длиной 100-200 километров.

Уже с такой нити плетутся кабели, которые могут содержать от двух до двухсот стекловолокон. Далее кабель оснащают вставками для упрочнения, экранирующими слоями и оболочкой для защиты.

Сложность технологии и ограничения

Оптоволокно не только дорого и сложно производить. Львиную долю затрат занимает его обслуживание. Здесь невозможно обойтись стандартной изолентой. Во время монтажа кабелей кварц нужно сращивать с применением специальной технологии, а линии необходимо доукомплектовывать дополнительным оборудованием.

Благодаря разным коэффициентам преломления света, в оболочке и сердцевине теоретически можно получить световод. Однако, пущенный через кварц свет будет постепенно затухать, поскольку свое дело делают примеси в стекле. При этом устранить этот недостаток полностью почти невозможно. Да и нескольких молекул H20 на целый километр провода хватит для появления ошибок в сигнале и понижения максимального расстояния его передачи.

Аналогичная проблема еще появлялась у электриков во время изготовления медных и других проводов. Позже был введен новый термин «дистанция регенерации» – максимальное расстояние, по которому без проблем передается сигнал.

Одна оптоволоконная жила в состоянии держать свет до двух-трех сотен километров. Однако, рано или поздно потребуется дополнительно усиливать и восстанавливать сигнал.

Для стандартных линий связи достаточно установить недорогие усилители. Для оптоволокна необходим монтаж сложного оборудования, для работы которого необходимо использовать редкоземельные металлы и запускать инфракрасные лазеры.

Так, в линию связи нужно врезать участок специального стекловолокна, насыщенного эрбием. Его атомы, благодаря накачиванию светом, будут находиться в возбужденном состоянии. Для поддержания такого состояния и нужен специальный лазер. Когда сигнал проходит через эту область, его мощность увеличивается почти вдвое, так как эрбий излучает свет, аналогичной сигналу, волны. Следовательно, зашифрованная информация сохраняется также. Далее свет может пройти еще 100 километров, где нужно еще раз повторить усиление.

Для поддержания этой системы нужен обслуживающий персонал и беспрерывный присмотр. Поэтому экономический эффект от прокладки оптики для абонентов почти во всех странах мира остается под большим вопросом. Тем не менее, оптоволокно для передачи данных – универсальный вариант.

Именно на данной технологии основан интернет современного уровня, позволяющий передавать видео в высоком разрешении, вести видеостриминг, поддерживать серверы онлайн-игр практически без задержек, предоставлять моментальную связь между любыми городами мира, а также обеспечивать мобильную передачу данных. Ведь станции мобильных операторов соединены между собой тоже стекловолокнами.

Хотя специалисты работают над созданием новых средств коммуникации, более мощная технология появится в обиходе еще нескоро. Да, некоторые решения позволяют увеличить пропускную способность примерно в два раза, а между континентами прокладываются все более толстые жилы из кварца.

Обойти принципиальный предел, связанный с максимальной скоростью света, через кварц, скорее всего, не получится. Можно отказаться от кварца и обеспечить передачу сигнала лазерами. Однако, это можно делать только по прямой линии. Поэтому передатчики потребуется устанавливать только в космосе или хотя бы над орбитой земли.

Будущие тенденции в технологиях оптоволокна

Оптоволоконная технология – это, безусловно, перспективная передача данных. Применение новых оптоволоконных технологий будет обусловлено развитием и повышением спроса в передаче информации. Ожидается, что она будет продолжаться и в будущем, с развитием новых и более передовых коммуникационных технологий.

Все сети передачи оптические

Предусмотрена полностью волоконно-оптическая передача данных. В таких сетях все сигналы будут обрабатываться в оптической области, без каких-либо электрических манипуляций.

В настоящее время обработка и переключение сигналов происходят в электрической области, оптические сигналы должны быть сначала преобразованы в электрический сигнал, прежде чем они могут быть обработаны и направлены к месту назначения. После обработки и маршрутизации сигналы затем повторно преобразуются в оптические сигналы, которые передаются на большие расстояния к месту назначения. Это оптическое преобразование в электрическое, и наоборот, приводит к дополнительной задержке в сети и, таким образом, является ограничением для достижения очень высоких скоростей передачи данных.

Еще одно преимущество всех оптических сетей заключается в том, что не будет необходимости заменять электронику при увеличении скорости передачи данных, так как вся обработка и маршрутизация сигналов происходит в оптической области. Однако, прежде чем это станет реальностью, необходимо решить проблемы оптической маршрутизации и переключения длин волн. В настоящее время ведутся исследования, направленные на поиск эффективного решения этих проблем.

Терабитные сети

Мультиплексирование с разделением волн помогает добиться скорости несколько терабит. Общемировая потребность в увеличении пропускной способности привела к появлению интереса к разработке многотерабитных сетей. Исследователи смотрят на достижение еще более высокой пропускной способности со скоростью 100 Тбит / с. При непрерывном снижении стоимости волоконно-оптических компонентов в будущем возможна доступность гораздо большей пропускной способности.

Интеллектуальная сеть передачи данных

В настоящее время традиционные оптические сети не в состоянии адаптироваться к быстрому росту онлайн-сервисов передачи данных из-за непредсказуемости динамического распределения полосы пропускания. Традиционные оптические сети полагаются, в основном, на ручную настройку сетевого подключения, что отнимает много времени и не в состоянии полностью адаптироваться к требованиям современной сети.

Интеллектуальная оптическая сеть – это будущая тенденция в развитии и она будет иметь следующие приложения:

  • проектирование трафика,
  • динамическое распределение маршрутов ресурсов,
  • специальные протоколы управления для управления сетью,
  • масштабируемые возможности сигнализации,
  • пропускная способность по требованию,
  • аренда длины волны.

Сверхдальняя передача данных

В области сверхдальнемагистральной оптической передачи исследованиям подлежат ограничения, налагаемые из-за несовершенства передающей среды. Дисперсионный эффект побудил исследователей изучить потенциальные преимущества распространения солитонов (уединенная волна). Более глубокое понимание взаимодействий между электромагнитной световой волной и передающей средой необходимо для того, чтобы перейти к созданию инфраструктуры с наиболее благоприятными условиями для распространения светового импульса.

Усовершенствования в лазерной технике

Другой будущей тенденцией будет расширение существующих полупроводниковых лазеров на более широкий спектр длин волн генерации. Коротковолновые лазеры с очень высокой выходной мощностью представляют интерес в некоторых оптических приложениях высокой плотности.

В настоящее время доступны лазерные источники, которые имеют спектральную форму способную компенсировать хроматическую дисперсию. Одномодовые перестраиваемые лазеры имеют большое значение для будущих когерентных оптических систем. Эти перестраиваемые лазеры работают в одном продольном режиме, который может быть настроен на диапазон различных частот.

Лазерные узлы нейронной сети

Лазерная нейронная сеть является эффективным вариантом реализации узлов оптической сети.

Предполагается, что специализированная аппаратная конфигурация, работающая в оптической области, и использование сверхбыстрых фотонных секций позволят еще больше повысить пропускную способность и скорость телекоммуникационных сетей.

По мере того как сети будут усложняться в будущем, использование лазерных нейронных узлов может быть эффективным решением.

Полимерные оптические волокна

Полимерные оптические волокна предлагают много преимуществ по сравнению с другими решениями для передачи данных, такими как медные кабели, беспроводные системы связи и стекловолокно.

По сравнению со стеклянными, полимерные оптические волокна обеспечивают легкую и менее дорогостоящую обработку сигналов, а также являются более гибкими для разъемных соединений. Использование полимерных оптических волокон в качестве передающей среды для летательных аппаратов в настоящее время изучается различными научно-исследовательскими группами в связи с их преимуществами.

Кроме того, в будущем полимерные оптические волокна, вероятно, вытеснят медные кабели для соединения в распределительной коробке телекоммуникационной компании и обслуживаемого конечного потребителя.

В волоконно-оптической технологии важно добиться высокого качества передачи даже для сигналов с искаженной формой волны и низким отношением сигнал / шум во время передачи. В настоящее время ведутся исследования по разработке оптических приемопередатчиков, использующих новую и передовую технологию модуляции, с отличной хроматической дисперсией и допуском отношения сигнала к шуму, которые будут пригодны для сверхдальних систем связи.

Подводные системы

В целях повышения гибкости конфигурации сети в оптических подводных системах передачи данных ожидается, что разработка технологии конфигурирования ячеистой сети станет шагом в правильном направлении. В настоящее время большинство крупномасштабных оптических подводных систем принимают кольцевую конфигурацию.

Миниатюризация

В настоящее время различные примеси добавляются или удаляются из стекловолокна, чтобы изменить его светопропускающие характеристики. Результатом является то, что скорость, с которой свет проходит по стекловолокну, может быть проконтролирована, что позволяет производить индивидуальные стекловолокна для удовлетворения конкретных транспортных инженерных требований данного маршрута. Ожидается, что эта тенденция сохранится и в будущем с тем, чтобы производить более надежные и эффективные стекловолокна.

Кроме того, миниатюризация волоконно-оптических компонентов передачи данных является еще одной тенденцией, которая, скорее всего, будет продолжаться в будущем.

Преимущества и недостатки волоконно-оптического кабеля

Преимущества волоконно-оптических линий связи (ВОЛС) перед традиционными «металлическими» средствами передачи:

  • Широкая полоса пропускания;
  • Незначительное ослабление сигнала, например применительно к сигналу 10МГц оно составит 1,5 дБ/км по сравнению с 30дБ/км для коаксиального кабеля RG6;
  • Исключена возможность возникновения «земляных петель», так как оптоволокно является диэлектриком и создает электрическую (гальваническую) изоляцию между передающим и принимающим концом линии;
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены электромагнитному воздействию
  • Не вызывает помех в соседних кабелях или в других оптоволоконных кабелях, так как носителем сигнала является свет и он полностью остается внутри оптоволоконного кабеля;
  • Стекловолокно абсолютно не чувствительно к внешним сигналам и электромагнитным помехам (ЭМП), не имеет значения рядом с каким блоком питания проходит кабель (110 В, 240 В, 10 000 В переменного тока) или совсем рядом от мегаватного передатчика. Удар молнии на расстоянии 1 см. от кабеля не даст ни каких наводок и не отразится на работе системы;
  • Информационная безопасность — информация по оптическому волокну передаётся «из точки в точку» и подслушать или изменить ее можно только путем физического вмешательства в линию передачи
  • Оптоволоконный кабель легче и миниатюрней – его удобней и проще укладывать чем электрический кабель такого же диаметра;
  • Сделать ответвление кабеля без повреждения качества сигнала не возможно. Любое вмешательство в систему сразу обнаруживается на принимающем конце линии, это особенно важно для систем обеспечения безопасности и видеонаблюдения;
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Стоимость кабеля снижается с каждым днем, его качество и возможности начинают превалировать над затратами на построение слаботочных на базе ВОЛС

Идеальных и безупречных решений не существует, как и любая система, ВОЛС имеет свои недостатки:

  • Хрупкость стекловолокна – при сильном изгибании кабеля возможна поломка волокон или их замутнение из-за возникновения микротрещин. Для устранения и минимизации этих рисков применяются усиливающие кабель конструкции и оплетки. При монтаже кабеля необходимо соблюдать рекомендации производителя (где, в частности, нормируется минимально допустимый радиус изгиба);
  • Сложность соединения в случае разрыва – требуется специальный инструмент и квалификация исполнителя;
  • Сложная технология изготовления, как самого волокна, так и компонентов ВОЛС;
  • Сложность преобразования сигнала (в интерфейсном оборудовании);
  • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛС лучше, чем для других систем;
  • Замутнение волокна вследствие радиационного облучения (однако, существуют легированные волокна с высокой радиационной стойкостью).

Монтаж систем ВОЛС требует от исполнителя соответствующего уровня квалификации, так как концевая заделка кабеля производится специальными инструментами, с особой точностью и мастерством в отличии от других средств передачи. Настройки маршрутизации и переключения сигналов требуют специальной квалификации и мастерства, поэтому в этой области не стоит экономить и бояться переплатить профессионалам, устранение нарушений в работе системы и последствий не правильного монтажа кабеля обойдется дороже.

Вывод

Применение новых оптоволоконных технологий сделало коммуникационную индустрию успешной областью, когда речь заходит об инновациях в том, как люди общаются с миром.

Принцип работы оптоволокна расширил возможности передачи данных в более быстрых скоростях, передовых методах коммутации и более интеллектуальных сетевых архитектурах, которые автоматически изменяются динамически в ответ на запросы трафика и в то же время являются экономически эффективными.

Ожидается, что в ближайшие годы этот бесспорно растущий спрос на оптоволоконные технологии будет продолжаться.

Источники

  • http://composs.ru/optovolokno-chto-eto-takoe/
  • https://v-nayke.ru/?p=16307
  • https://WiFiGid.ru/poleznoe-i-interesnoe/optovolokno-kak-rabotaet
  • https://trashbox.ru/link/optic-fiber-how-it-works
  • https://born-shop.ru/articles/stati-o-kabelnykh-sistemakh/ustrojstvo-optovolokonnogo-kabelya.html
  • https://zen.yandex.ru/media/localhost/peredacha-dannyh-s-pomosciu-sveta-ili-chto-takoe-opticheskoe-volokno-5b10a2913dceb710503c2cd0
  • https://vashtvmir.ru/montazh-volokonno-opticheskih-liniy-svyazi-vols/

Понравилась статья? Поделиться с друзьями:
Переход на цифровое телевидение в России 2019
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: